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1 INTRODUCTION 

In order to provide an appropriate design wind speed for the wind resistant design of a 
structure, it is essential and important to estimate the probability distribution of annual 
maximum wind speeds. The annual maximum value of 10 minute mean wind speeds is 
only one value among 52,560 samples in one year. It seems reasonable to assume that the 
statistical nature of 10 minute mean wind speeds, such as four moments, provide suffi-
cient information for the characteristics of annual maximum wind speeds. 

In this research, samples of 10 minute mean wind speeds at 155 meteorological 
sites are utilized to investigate the general relationships between four moments and the 
probability distributions of annual maxima. Then, the application of polynomial transla-
tion method is verified by utilizing these four moments and a simulation procedure based 
on polynomial translation method is developed. Simulation results of annual maximum 
wind speeds of several meteorological sites show that such examinations of probabilistic 
characteristics of 10 minute mean wind speeds may provide good information for wind 
hazard models for individual sites. 

2 CHARACTERISTICS OF FOUR MOMENTS OF PARENT DISTRIBUTION 

2.1 Yearly variation of four moments 

10 minute mean wind speeds from 1961 to 2002 at 155 meteorological sites in Japan are 
utilized to calculate four moments (mean, standard deviation, skewness, and unbiased 
kurtosis) to represent the yearly statistical nature. Figure 1 shows the parent distribution 
and its probability distribution at Tokyo in 2002. Four moments calculated from these 
samples are 3.192 for mean, 1.528 for the standard deviation, 0.916 for the skewness and 
1.255 for the unbiased kurtosis (“kurtosis” hereafter), which can be indicated as the sta-
tistical nature of the probability distribution. The annual maximum sample is pointed as 
the tail point of the probability distribution. Once the statistical nature is properly esti-
mated, the simulation of annual maxima can be expected by estimating the four moments.  
 

Figure 1 Parent distribution and probability distribution of 10 minute mean wind speeds at Tokyo in 2002 
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Yearly variations of four moments for one specific site, such as Tokyo in Figure 2, 
can then be obtained to observe the long term characteristics. It is found that in Figure 2 
the variation of skewness and kurtosis are highly correlated. Among 155 meteorological 
sites, correlation coefficients between four moments are calculated and taken mean and 
standard deviation values as Table 1. A high mean value and a relatively low standard 
deviation value of 155 correlation coefficients indicate that the high correlation exists be-
tween yearly skewness and kurtosis in most sites. 

  

 Figure 2 Yearly variations of four moments and relationship between skewness and kurtosis at Tokyo 
from 1961 to 2002 

 
Table 1 Mean and standard deviation value of correlation coefficients between four moments 

 μ – σ μ – β3 μ – β4 σ – β3 σ – β4 β3 – β4 
mean 0.59 -0.09 -0.06 0.17 0.09 0.91 

standard deviation 0.33 0.30 0.26 0.32 0.27 0.05 
※μ: mean, σ: standard deviation, β3: skewness, β4: kurtosis

 
Histograms of four moments at Tokyo from 1961 to 2002 can also be drawn as 

Figure 3. It is observed that the histograms of skewness and kurtosis show a tail which 
makes the distribution similar to a lognormal distribution rather than a normal distribu-
tion. Among 155 sites, the common features can also be observed in most sites. For the 
simulation of annual maxima, a proper assumption of the probability distribution model 
for four moments may contribute to a better prediction. 

  

(a) μ (in m/sec)        (b) σ (in m/sec)            (c) β3               (4) β4 
Figure 3 Histograms of four moments at Tokyo from 1961 to 2002 

2.2 Regional variation of four moments 

After examining statistical characteristics of yearly variations of four moments in 155 
sites, differences from site to site are further examined as the effect of regional variation 
of four moments. Mean and standard deviation of yearly four moments are calculated and 
denominated as moment parameters, such as E(μ), E(σ), E(β3), E(β4), σ(μ), σ(σ), σ(β3), 
and σ(β4). From the histograms of these 155 sets of moment parameters, it indicates that 

y = 4.4142x - 2.9314
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some sites show relatively large scattering in yearly skewness and kurtosis. Once the es-
timation of skewness and kurtosis is large, the simulation of annual maxima will results 
in longer tail in the probability distribution model so that the simulation will be overesti-
mated (Lo and Kanda, 2010). 
 

(a) E(μ)                (b) E(σ)                (c) E(β3)               (d) E(β4) 

(e) σ(μ)                (f) σ(σ)                (g) σ(β3)               (h) σ(β4) 
Figure 4 Histograms of moment parameters calculated from four moments at 155 sites in Japan 

3 APPLICATION OF POLYNOMIAL TRANSLATION METHOD 

3.1 Brief introduction 

From the aforementioned statistical nature of parent distributions in all sites, it is essential 
to simulate annual maximum wind speeds with the proper estimation of four moments, 
especially those with extremely large skewness or kurtosis. A set of non-Gaussian ran-
dom variables, Y, whose four moments are given, is written in a polynomial form with 
respect to a set of Gaussian random variables, X, as 

32 dXcXbXaY   (1) 

where the coefficients of the polynomial form can be approximated by the following 
equations, 

  0caYE   (2) 

  1d15c2bd6bYVar 222   (3) 

   2d105bd24bc2Y 22
3   (4) 

      22222
4 d225c141bd4812dbd28b1cbd24Y   (5) 

An available approximation based on least square method for nonlinear parameters 
was introduced by Edgeworth (1898) to solve Equation (2) ~ (5) simultaneously. Table 2 
shows the application sheet provided by Edgeworth to estimate the coefficients of the 
polynomial form. By substituting the given skewness and kurtosis, coefficients, a, b, c, 
and d, can be obtained by Equation (6) and Table 2. A set of non-Gaussian random varia-
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bles can then be obtained by assuming X a set of Gaussian random variables in Equation 
(1). After adding the given mean and multiplying the given standard deviation, a set of 
non-Gaussian random variables, which possess the statistical nature of given four mo-
ments, is translated from a set of Gaussian random variables.   


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
16

1j
jjbTb  




16

1j
jjcTc  




16

1j
jjdTd  ca   (6) 

 
Table 2 Application sheet for approximation of coefficients of the polynomial form 

 
j Tj bj cj dj 

β4<1.5 β4>=1.5 β4<1.5 β4>=1.5 β4<1.5 β4>=1.5 
1 1 1.0000 0.9698 0.0000 0.0012 0.0000 0.0112 
2 β3 -0.0014 -0.0305 0.1668 0.1566 0.0007 0.0129 
3 β4 -0.1238 -0.0765 0.0000 -0.0009 0.0412 0.0236 
4 β3

2 0.1224 0.0558 0.0019 -0.0024 -0.0469 -0.0177 
5 β4

2 0.0353 0.0054 0.0000 0.0002 -0.0131 -0.0018 
6 β3

3 -0.0491 -0.0348 0.0653 0.0466 0.0258 0.0216 
7 β4

3 -0.0085 -0.0002 0.0001 0.0000 0.0033 0.0001 
8 β3β4 0.0027 0.0181 -0.0397 -0.0155 -0.0009 -0.0061 
9 β3

2β4 -0.0768 -0.0130 0.0178 0.0236 0.0314 0.0087 
10 β3β4

2 -0.0075 -0.0041 0.0183 0.0026 0.0021 0.0016 
11 β3

3β4 0.0134 0.0029 -0.0068 0.0023 -0.0108 -0.0009 
12 β3β4

3 0.0007 0.0003 -0.0018 -0.0002 0.0010 -0.0001 
13 β3

2β4
2 -0.0101 -0.0002 -0.0071 -0.0029 0.0018 -0.0005 

14 β3
2β4

3 0.0103 0.0001 0.0136 0.0001 0.0002 0.0000 
15 β3

3β4
2 -0.0322 -0.0002 -0.0167 -0.0011 0.0165 -0.0001 

16 β3
3β4

3 0.0127 0.0000 0.0207 0.0000 -0.0033 0.0000 

3.2 Testing of application sheet for polynomial translation method 

To verify the applicability of the application sheet (Table 2) and the polynomial transla-
tion method in simulating non-Gaussian random variables, a testing flow is attempted as 
Figure 5. A specific set of four moments is first given to generate a new set of non-
Gaussian random variables. Comparing the given set and the resultant set of four mo-
ments, the applicability can be verified. 
 

Figure 5 Testing flow for verification of polynomial translation method 
 

All the four moments calculated from 155 sites are then utilized to verify the appli-
cation range. The maximum and minimum values of all four moments are defined as the 
testing ranges. To simplify the testing procedure, whenever one given moment is tested, 
other three given moments are fixed at their mean values. As shown in Figure 6, the test-
ing flow is carried out for the verification of each given moment. In the topmost four fig-



ures, the first moment value, mean, is varying from 1.003 to 9.887 and other three mo-
ment values are fixed at 2.041, 1.175, and 2.087 respectively. 

For the varying given mean and given standard deviation, the simulation of non-
Gaussian random variables can fit the original statistical nature well. However, when the 
given skewness is larger than 1.4, the polynomial translation method based on Table 2 
will provide a biased resultant statistical nature. The same tendency occurs in the given 
kurtosis when the given value is larger than about 12. 
 

Figure 6 Verification results of each varying given moment 
(−: given moment values; +: resultant moment values) 

3.3 Modification of application sheet based on observed statistical nature 

From the testing results in 3.2, it is indicated that extremely large given skewness or kur-
tosis is not suitable for the approximation sheet proposed by Edgeworth. To avoid the 
complexity of solving the nonlinear equations (2) ~ (5) and to improve the approximation 
method proposed by Edgeworth, the modification is conducted by utilizing the observed 
four moments from 155 sites. As shown in Figure 7, all sets of four moments from 155 
sites are substituted into the testing flow in Figure 5 again. Given and resultant moment 
values are drawn respectively to show the biases. It can be presumed that the bias in 
standard deviation figure is caused by large given skewness or kurtosis. In the figures of 
skewness and kurtosis, there seems a bilinear relationship between given and resultant 
values. 
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Kanda, 2003, 2005). To estimate the annual maximum wind speed distribution for a spe-
cific site, 8 moment parameters, E(μ), E(σ), E(β3), E(β4), σ(μ), σ(σ), σ(β3), and σ(β4), are 
calculated in advance. By utilizing these moment parameters and the observation of 
probability distribution models, the generation of skewness and kurtosis can be conducted 
as normally distributed or log-normally distributed. According to the linear relationship 
between yearly skewness and kurtosis, a fully correlated assumption is also included. 
Then the polynomial translation method is applied to generate non-Gaussian samples. 
From these samples, the maximum value is picked as the annual maximum wind speed. 
In this research, 100 sets of four moments are generated as samples of 100 years. Every 
year has its annual maximum value and can be drawn as an extreme value distribution on 
the Gumbel model paper. To keep the randomness of simulation procedure, the extreme 
value distribution drawing is repeated for 11 times and taken the median values as the 
best estimation of annual maximum wind speed distribution for the specific site. 
 
 
 
 
 
 
 
 
 

Figure 11 Simulation procedure for 100 annual maxima based on polynomial translation method 
 

4.2 Simulation results of several sites in Japan 

The aforementioned simulation procedure and the general statistical nature of 155 mete-
orological sites are then applied to estimate the annual maximum wind speeds. Four sites, 
Aikawa, Sapporo, Ishigakijima, and Kumijima, are chosen to demonstrate the agreement 
of simulation results and observed records. 

Table 3 lists moment parameters of these four sites. Since the standard deviation of 
skewness and kurtosis is quite large in Ishigakijima and Kumijima, it is predictable to 
generate a longer tail in the probability distribution of skewness and kurtosis and further 
results in large annual maximum wind speeds. For Aikawa and Sapporo relatively, the 
values of moment parameters are considered moderate among 155 sites. 
 

Table 3 Moment parameters of four meteorological sites 
 E(μ) E(σ) E(β3) E(β4) σ(μ) σ(σ) σ(β3) σ(β4) 

Aikawa 4.32 3.33 1.31 1.40 0.41 0.30 0.12 0.48 
Sapporo 2.51 1.71 0.94 0.88 0.28 0.22 0.14 0.49 

Ishigakijima 4.51 2.15 1.28 6.32 0.38 0.23 0.65 6.47 
Kumijima 3.70 1.96 0.92 5.05 0.18 0.15 0.60 5.30 

 
Figure 12 shows the simulation results based on two probability distribution models for 
generated skewness and kurtosis. For Aikawa and Sapporo, skewness and kurtosis are 
generated based on moderate moment parameters so that the assumption of probability 
distribution can be normal or lognormal. However, for Ishigakijima and Kumijima, a 
lognormal distribution may be more appropriate to generate skewness and kurtosis. The 
errors between the observed annual maxima and the simulation results are 2.97%, 9.67%, 
16.93%, and 16.21% by Equation (9). 
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